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Abstract

An intuitive algorithm for the determination of voltage distribution in the application to shape control of smart
structures using piezoelectric actuators is presented here. This approach uses curvature as the fine-tuning criteria on top
of the common displacement-based shape control, and is an extension of the slope-displacement method developed by
the same authors. The algorithm called the perturbation buildup voltage distribution (PBVD) is based on an iterative
approach inspired by a previous algorithm BVD on displacement control. This method aims to provide a means of
targeting the desired shape of a structure by using a higher level shape attribute, in this case curvature. Intuitive iterative
parameters of the PBVD method allow the user to have better control over the degree of conformity of the structure’s
shape. A natural consequence of this method is the smoothing of the resultant shape. Results show that the slopes and
curvatures of the structure can be improved but at a tolerable expense of the displacement criteria. Another result of
practical interest is the reduction of internal stresses compared to cases using pure displacement shape control. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Significant interest has been raised in the field of smart or intelligent structures, over the past decade.
Conventional structural engineering usually involves structures which are passive but the new technology of
smart structures involve active structures, that is, structures with the ability to change its overall properties
or configuration while in operation. The smartness or the intelligence of the structure refers to the ability of
the structure to actuate itself using some built-in control algorithms to actuate the adaptive materials in-
corporated in the structure. It may depend on the response obtained by a set of sensors also made of
adaptive materials. Such a self-contained system has the ability to perform various tasks such as vibration
control, shape control, health monitoring and stability control.
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Nomenclature

BVD  buildup voltage distribution

CDSC curvature displacement shape control
CPI curvature patch insensitivity index
DBSC displacement based shape control

LLS  linear least squares

LS least squares

MCcLLS multi-criteria linear least squares

MCSC multi-criteria shape control

PBVD perturbation buildup voltage distribution
SDSC slope-displacement shape control

Shape control applications had existed before the concept of smart structures in particular regarding the
shape control of space antenna, reflectors etc., (Haftka and Adelman, 1985). Many such work involving
space truss structures are based on controlling the shape at discrete points using conventional axial (point)
actuators. The application considered in this paper is that of quasi-static shape control. Shape control
involves manipulating the structure’s shape to conform to a desired shape specified by the user. Applica-
tions range from controlling the shape of aerodynamic surfaces such as an aerofoil to large flexible space
structures (Okubo et al., 1996) or space antenna reflectors (Tabata and Natori, 1996). It has been noted that
smart actuators integrated within the structure produces small in-plane deflections that can in turn produce
large out-of-plane deformations (Paradies et al., 1996). The objective of shape control is to obtain a shape
that is as close as possible to the desired shape by either determining the magnitude of input signal to apply
to each actuator, or the optimal layout of actuators, as well as determining any other variables that might
affect the behavior of the structure. Several works presented results of various shapes obtained by changing
input parameters such as actuator size, location and actuator voltages (Donthireddy and Chandrashekhara,
1996; Eisenberger and Abramovich, 1997). Although the viability of the shape control of structures was
shown, they did not address the shape control problem directly.

The true shape control problem is a type of inverse problem with no explicit solutions. The core of shape
control is to minimize the cost functional usually defined as the squared difference of displacements between
the desired and the calculated/actual shape. Koconis et al. (1994a,b) developed analytical methods for
composite plates and shells based on sandwich structures and finding solutions to expressions corre-
sponding to zero slope with respect to variables to be optimized. Hsu et al. (1997) adopted finite elements
for composite plates and used a “gradient projection method” to find the “search direction”. Until now
most plate models have been based on Kirchoff’s thin plate theory or the first order shear deformation
theory; there has been little work on shape control using high order displacement theories for composite
plates.

An iterative approach for shape control of composite beams was formulated by Chandrashekhara and
Varadarajan (1997) using Reddy’s (1984) third order displacement theory while the composite plate version
(Varadarajan et al., 1998) used first order shear deformation theory. Besides minimizing the error function,
they also considered closed loop control where the displacements are fed back to determine the next set of
input voltages. Techniques of using optimal linear quadratic Gaussian for shape control of smart structures
were implemented by Balakrishnan (1994) and Tan and Bainum (1994a,b). Alternatively, there are simpler
heuristic methods that have been developed for general shape control of structures which are not neces-
sarily smart structures. Some of these are the Worst-in-Best-out and the exhaustive single point substitution
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and Skelton and DeLorenzo’s (SD) method (see Haftka and Adelman, 1985). The latter algorithm is based
on choosing all actuators initially and then removing those which make the least contribution. Another
method called the successive peak error correction (SPEC) (Subramanian and Mohan, 1996) was claimed to
be faster than the SD method but with comparable precision.

In Chee et al. (2000b), an intuitive/heuristic shape control algorithm was developed that has been in-
spired by elements of the SPEC method, evolutionary strategies and artificial neural networks. The algo-
rithm called BVD, iteratively builds up the voltage magnitudes of each potentially active patch, thus
resulting in a final voltage distribution. Like many other shape control work, BVD is solely displacement
based. Following this, Chee et al. (2000c) introduced slope as the next criteria for shape control. Thus a
dual-criteria SDSC algorithm, called PBVD, was developed. PBVD is an iterative algorithm with a concept
similar to BVD. Initially displacement shape control based on a LLS fit is performed on the structure. The
result is a structure with some bumpiness and this is taken as the initial configuration for PBVD.

The work presented in this paper extends the concept of MCSC to include curvatures as the additional
criteria, instead of slopes. Thus in PBVD, curvature is regarded as the fine-tuning criteria to smoothen the
structure. In the iterative process, the voltages are perturbed and build up based on a cost function de-
termined by the curvature. Unlike the least square method, PBVD makes no assumption on linearity and
hence can be used for general non-linear piezo-elastic systems. Initial investigation includes dual criteria
CDSC using standard McLLS. It will be shown that due to the competing effects of displacement and
curvature, it is very difficult to select the parameters of McLLS. In comparison, the PBVD parameters are
more intuitive. The results will show that the smoothing of transverse displacement achieved by PBVD-
SDSC (Chee et al., 2000c) will also be achieved here by PBYD-CDSC. In addition, there is greater re-
duction in stresses achieved here.

2. Mathematical model

The present work will consider a composite laminate plate structure as the smart structure using pie-
zoelectric materials as the adaptive actuators. The mathematical model is a hybrid of a high (third) order
displacement theory and layerwise concept (Chee et al., 2000a) that fully accounts for the electro-
mechanical coupling. This also allow both thin and thick composite structures to be modeled and the
piezoelectric actuators can be placed in any of the layers (i.e. embedded or surface bonded). The model is
then incorporated into a finite element (FE) formulation which, in general, also accommodates greater
freedom as to where the actuators may be placed. The use of finite element analysis (FEA) mean that the
geometry is not restricted to simple shapes unlike that required by exact analytical solutions methodologies.
The FEA calculations will be done using an in-house developed program based on the theoretical for-
mulation.

2.1. Governing equations

The mechanical behavior of the structure is modeled by the third order displacement field, used by Lo
et al. (1977), as shown in Eq. (1).

U(x,y,z) = uo(x,y) + 2, (x,y) + 2((x,0) + 2 ¢, (x, )
V(x,p,2) = vo(x,y) + 29, (x,3) + 2L, (x,0) + 2, (x, ) (1)
W(x,y,2) = wo(x,y) + 2y.(x, ) + 2 {.(x, )

The displacement functions U, V, W in the x, y, z directions, are composed of in-plane sub-functions
such as u(x,y), vo(x,¥), wo(x,¥), ..., ,(x,»), etc., which are separated from the thickness (z) dimension.
The advantages of the cubic HOD are (i) It is suitable for both thick and thin composite structures. (ii) No
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shear correction factor is required. (iii) Models the transverse shear effects and captures a parabolic
transverse shear strain across the thickness of the structure. (iv) Transverse normal strain is also accounted
for. (v) Less restriction on the type of problem because displacement field is independent of boundary
conditions and material properties. (vi) The absence of derivatives in the displacement field means that C°
shape functions can be used in the FE formulation. This represents a total of 11 mechanical degrees of
freedom (Eq. (2)).

u= [MO Up Wo lpx lpy lpz Cx Cy Cz d)x d)y ]T (2)
The strain vector Eq. (3), are defined in the usual manner and thus will not be elaborated further.
[81 & & & ]T =& = Dbu

T

[ea &) =& = Du (3)

The linear layerwise formulation has been used by Saravanos and Heyliger (1995), and before them,
Robbins and Reddy (1991). This technique will be applied to the electric potential and separates the field
into planar (¢;) and transverse layerwise (L;) functions. General layerwise function may be written as
Eq. (4).

nlayers+1
@(x,y,z, t) = Z Lj(z)d)j(x?yv t) (4)

=1

The structure is divided into several layers, and each layer can be approximated by a linear electric
potential field in the z direction. Hence if the overall electric potential across the thickness is a polynomial
function of n-degree, then there should be at least n discrete layers for this layerwise approximation. So the
electric potential within the kth layer is given in Eq. (5).

zZ—Z zZ—Z
D(x,9,2);, = Lia(2) 1 (x,3) + Lia(2) sy (x, ) where Li(2) = ﬁ’ Li(2) = - (5)
Zk — Zjyl Zg+1 — Zk
Note that ¢, (x,y) and ¢, (x,y), are functions at the kth and (k + 1)th interfaces respectively.
From definition of the electric field being the negative gradient of the electric potential, the layerwise
expression for the electric field at the kth layer is Eq. (6).

Oy (ry o1 (5,
E.(x,y,2) Lkd(z)% ¥ Li(2) :p,{a+(y)
A X 0by .
E)r(xvyyz) = — Lkd(z)%yw—i_Lku(z)W (6)
Ez(x7yaz) k md)k(x,y) +Z/,+11—f21\-¢k+1 (x,y)

The FE formulation is based on the Hamilton’s variational principle which considers the strain potential
energy and work for the whole structure. Thus, the mechanical behavior modeled by the HOD theory and
the electrical behavior modeled by the layerwise theory will be fully coupled. The natural boundary con-
ditions are also implicitly accounted for. The present work will neglect the kinetic energy term.

The potential energy is the internal potential strain energy of the system or structure. And for piezo-
electric systems, i.e. structures which have parts that are piezoelectric materials, the potential energy
(Tiersten, 1969) is stated in Eq. (7):

dP = (¢de — DAE) x Volume (7)
The specific form of potential energy (P) of Eq. (7) was chosen because its natural variables are strain (&)
and electric field (E), both of which can be expressed in terms of displacement and electric voltage re-

spectively, which are obvious choices as degrees of freedom in FEA. This necessitates the use of the stress
formulation of the piezoelectric constitutive equation as shown in Egs. (8a) and (8b).
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O¢ LCle C26 C36 Coo &6 €36
(04) [ cas C45} (84> [614 624](151)
s | Cas  Cs5] \ &5 e;s ey \E

_ . T _ . T
oy = ey — e By, 0y = co6s — e Ej

D el ers| (& 1 Xz | Er
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D; = ey, + yE;, Dy = eyep + yoEo

The substrate material is orthotropic at most and the piezoelectric material is “orthorhombic-class
mm?2” as indicated by Eqgs. (8a) and (8b). Piezoelectric stress coefficients (¢, and ¢;) are set to zero for non-
piezoelectric materials. The global coordinate system used in Eqs. (8a) and (8b) has taken into account the
rotation of the material about the transverse normal z-axis. For a material with zero rotation, then the
following material coefficients are zero: ciq, €26, C365 Ca5, €145 €365 X12-

Using the constitutive Egs. (8a) and (8b), the potential energy integral can be expressed in terms of
virtual strains and electric fields as:

I th
6/ Pdr = / /{882(6‘1,81, — €bTE0) + 883(6583 — e;rEi) — SE;F(ESSJ + /CZEI) — BEOT(ebEb + XOEO)}dth
n I3 14

©)

The total virtual work of a structure is generally due to the mechanical forces including volume, surface
forces and point forces acting on displacements and also due to electrical charges in the presence of an
electric potential difference.

To achieve practical solutions from the analytical formulation described above, a FE formulation with
electric potential and mechanical variables as the degrees of freedom is introduced. In the present work a
eight-node ‘HOD-layerwise’ rectangular plate element has been developed. Although the FE implemen-
tation shown below appears standard, there is novelty in the specific form of the combination of the HOD-
layerwise concept.

The real displacement functions (Eq. (1)) and strains (Eq. (3)) in terms of the nodal variables [u,] are
given in Eqgs. (10) and (11).

U(x,y,z)

V(x,3,2) | = [A@]INu(S;m)][ue] (10)
W(x,y,z)

(65 (x, 3, 2)] = [Ds (x, 3, 2)] [Nu(&, )] ]
[£5(x, 3, 2)] = [Ds(x, 3, 2)] + [Nu(Es )] [ue]

The shape function matrix N,(&,n) in Eq. (10) isan 11 x (11 x 8) matrix that uses the standard eight-node
serendipity shape functions. The electric counterpart of the shape function matrix is, Ny(&,7,z),, with
dimension 1 x 8(n + 1) and it incorporates the layerwise and the eight-node shape functions. It relates
the nodal voltages to the voltage function (Eq. (12)) of the eth element at the kth layer and the electric field

(Eq. (13)).

(11)
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(p(xayvz)li = [N¢(€7’172)k][¢e] (12)

[E(xvy’z)]z = _V[N¢(f»’772)k}[¢e] (13)

where V = the gradient operator.
Finally, applying the variational principle by including the definitions of Egs. (10)—(13) the governing
equation of the structure in terms of the FE nodal variables is obtained in Eq. (14).

[[Kuu] [Ku¢]:| [“g] — |: [Fg] :| (14)
[Kou] (Kool | | Do —[0]

Eq. (14) represents the summation of the equations of all the elements and thus is the global equation for
the system, hence the subscripts ‘g’. This formulation is general in the sense that it can model laminated
composite structures with arbitrary boundary conditions. The robustness of this formulation is that each
element of each layer can be made of any material and if it is piezoelectric, then setting the appropriate

(electrical) boundary conditions will allow it to act as an actuator or sensor. The element is validated by
comparing to known elements and results (Chee et al., 2000a,b).

3. Multi-criteria shape control

As mentioned in the Introduction, this paper will focus on dual-criteria shape control where the
transverse displacements and curvatures are used to measure the conformity with the desired shape. The use
of displacements and slopes had been presented in Chee et al. (2000c¢).

3.1. Defining the problem

The structure whose shape is to be controlled is a laminated composite plate where the piezoelectric
actuators can be embedded or surface attached. The electric field is applied in the normal direction of the
composite plane. The actuators are discretized as “patches’ to distinguish them from the hypothetical-
computational “elements’ in FEA. Thus, for the FEA, a patch is constructed of at least one finite element.
The size of the patch is the real size of the actuator while the size of the element is determined by the user
depending on the structural topology and desired accuracy of the FE mesh. The top and bottom surfaces of
each patch have constant voltages.

The shape control problem analyzed in this paper involves finding the voltage distribution, that is, the
magnitude of voltages to be applied to each of the piezoelectric patches. The desired shape of the structure
is known, either as a mathematical function or the specification of the displacements at the nodes. There
exists a linear relationship between the voltage and displacement (Chee et al., 2000b) and hence also be-
tween the voltage and curvatures due to the linear model of the constitutive properties and the governing
equations. Thus the curvatures (for the eth element) and transverse nodal displacements (for the whole
structure) can be directly related to the applied patch voltages (Egs. (15) and (16)) by the influence coef-
ficient matrices obtained by FEA.

{w} =[G} = ZP{CW}k¢k ={Chd1 +{C}rtbs + -+ {Cu}y, by, (15)

where K,, = —0y,/0x, Cx, = matrix of coefficient of K., ¢, = voltage on patch k, N, = number



C. Chee et al. | International Journal of Solids and Structures 38 (2001) 6381-6403 6387

Np

{Ku} =[G {o} = Z{Ck\x}k(pk (16)

of active patches.

The curvatures K,, and K,, are defined similarly to K,.. Note that the curvatures are defined using the
first order terms of the third order displacement field (Eq. (1)), in order to account for the transverse shear
deformations (Koconis et al., 1994a; Kollar, 1990). When the voltage is perturbed by a small amount d¢; at
patch k only, from the base voltage configuration {d)o}, then the curvatures of the perturbed structure is
given by Eq. (17), where superscript 0 = quantities in base configuration. This concept is utilized in the
development of the PBVD algorithm in the following section.

{Ku} = {Ko} + {Cx. Jideby (17)

4. Preliminary investigation with multi-criteria linear least squares

The conformity of the actual shape with the desired shape will be measured using the sum of squared
differences of the displacements, slopes and curvatures (although slopes will not be the control criteria) as
defined in Eq. (18). The slopes S, and S, are defined in Chee et al. (2000c) while the slope measure LS S, and
the curvature measures LS X,,, LS K, are defined similarly to their counterparts in Eq. (18).

N, (Wi

—Wd)2 2 )2
Lsw=Y _Wi=%) (18)
;MaXWOW?Dz ZMaXVzﬂS a0 ZMaXVzU K4’

where N,, Ny and N are the number of points where displacement, slopes and curvatures are measured;
superscript d = desired variables.

Extending the well-known LLS method to the multi-criteria case (McLLS), the corresponding objective
function for CDSC is given in Eq. (19).

LSobj = «"LSw + «**LSK,, + «**LSK,, + o**LSK,, (19)

The structural model for the following set of tests is depicted in Fig. 1. The 20 shaded regions represent
areas designated as active patches. For the FEA, the structure is divided into 99 elements and four layers. In
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Fig. 1. Cantilever plate with 99 elements and 20 active patches (not to scale).
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the present case, each patch is modeled by one finite element. The dimensions of the cantilever plate are
length (L) = 0.150 m, width (C) = 0.120 m and the thickness of the single-layered substrate is 2.0 x 10~3
m. The gap between the patches and the edge are 0.005 m and the gaps between the patches themselves are
0.010 m. The Aluminum substrate has the following stiffness (GPa): ¢j; = ¢ = ¢33 = 105.896, ¢, = ¢23 =
ci3 = 54.552, cqs = c55 = cgs = 25.67. The piezoelectric actuators (PIC151), with thickness of 5.0 x 10™* m,
are located at the regions corresponding to the patches and are attached to the top and bottom layer of the
substrate. Their properties are stiffness (GPa): ¢;; = ¢2, = 107.6, ¢33 = 100.4, ¢, = 63.12, ¢p3 = ¢13 = 63.85,
Caq = 55 = 19.62, c6 = 22.24; electric permittivity (nF/m): y;; = y» = 9.818, 33 = 7.536; piezoelectric
strain constants (pm/V): d3; = d3; = —214.0, d33 = 423.0, d\5 = dhs = 610.0.

The present study focuses in obtaining a twisted desired shape because this is the interesting case where
PBVD is needed to improve the structure after the initial displacement shape control stage (Fig. 2). The
desired shape is specified by Eq. (20) where G is the scaling factor, in this case G = 1. The twisted, wide
cantilever example may represent a wing structure that is required to be twisted for aerodynamic purposes.

(cosh(x) — 1)sin(y)
G

w(x,y) = (20)

Recall that the aim to reduce the bumpiness of the resultant structure from DBSC (e.g. in case 1) led to
the proposal of MCSC. The series of tests, described in Table 1, varies the weights for each of the criteria.
In essence, cases 2-6 (Table 1) investigates the combinations of various criteria with respect to case 1 which
used only displacements as the SC criterion — DBSC. The weights are limited to a value of 0 or 1. In general

=T TV

Fig. 2. Midplane transverse displacement of cantilever plate with a twisted desired shape. Actual shape by displacement LLS is
superimposed (Oblique view).

Table 1
Test cases for MCSC using McLLS by variation of weights
Case Weights Figure
o oK oK oKo
1 1 0 0 0 2
2 0 1 1 1 3
3 1 1 1 1 3
4 1 1 0 0 3
5 1 0 1 0 3
6 1 0 0 1 4
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Fig. 4. Case 6 — Using w and K,, criteria only. Region near wall is smoothed but tip region diverges and curls.

the weights can have any positive real value, but this test series is only interested in examining some overall
major effects. The response to the different weight settings on the actual structure can be seen graphically in
the oblique views in Figs. 3 and 4, where the actual shapes were superimposed on the desired shape. Note
that cases 2-5 responded similarly so they are represented by Fig. 3.

Numerical results that indicate the conformity of the actual shape to the desired shape are shown in Figs.
5 and 6 which compares normalized LS displacements LSw, slopes LS S,, LS S, and curvatures LS K,,,
LSK,,, LSK,,, as defined in Eq. (18). Note that these six quantities are normalized further with respect to
their counterparts in Case 1 — which uses the displacement criterion only. Fig. 6 is the magnified version of
Fig. 5, excluding the LS w and tip displacement values which are usually much larger than 1. The following
observations are made from Figs. 3-6:

(1) The inclusion of any other criteria besides displacements, increases the differences in displacements
between the desired and actual shape, i.e. LSw(case 1)/LS w(case 1)>1, where i = 2,...,6. Graphically,
this can be seen in Fig. 2 as the case that uses the displacement criterion only (case 1), having the best match
between actual and desired shape among the other cases, although the structure appears bumpy.

(2) In terms of matching displacements, graphically the six cases fall into three distinguishable groups.
This is reflected in Fig. 5 where the LS w values for the six cases fall into three distinct ranges.

(3) Cases 2-5 (see Fig. 5) show the worst match for displacements, i.e. highest LSw values and the
greatest divergence in displacement at either end of the free corners. The common feature here is the use of
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Fig. 5. Least square measures of displacement LS w, slopes LS S, LS S, and curvatures LS K., LS K,,,, LS K,,, and tip displacement at
free corner for MCSC using McLLS.
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Fig. 6. Magnified version of Fig. 5 — excluding LS w and tip displacement.

either the K., or K, as the SC criteria. This infers the dominance of these two curvature criteria, meaning
that if they are used as control criteria, then all other criteria have almost no influence. Thus the algorithm
forces the structure to conform to the desired curvatures strongly while neglecting the other criteria. Not
surprisingly for these four cases, there is drastic reduction in the LS K, and the LS KX, values with respect to
case 1, see Fig. 6. The slopes S, did not perform that well either.

To summarize, curvatures tend to dominate over the displacement criteria, such that the presence of
curvature criteria means it is difficult to control displacements. When the curvatures are improved (less
bumpiness and lower LS values for curvatures) then the displacements, especially at the tip of the canti-
lever, diverges from the desired shape even more. The set of observations above is based on the structure in
Fig. 1, thus the observations do not necessarily apply to all shape control problems. A few points that can
be generalized are: (i) Some criteria may have strong dominance over the others. (ii) The displacement
criteria may be weak, therefore while other criteria are controlled, the resultant displacements may not
conform satisfactorily to the desired shape. (iii) It is impossible to improve all criteria simultaneously for all
shape control problems. As a further note, the method of simulated annealing (SA) has also been used to
conduct MCSC, however the results did not reveal anything extra over the observations made by McLLS.
Most of the SA results indicate similar drawbacks to the McLLS method and so it is not necessary to
present their results here.
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In this simple series of tests, the weights are only given the values of 0 or 1 which means their corre-
sponding criteria can either be switched on or off. In reality, there is an infinite combination of weights that
are possible. Since the performance of the McLLS depends on the selection of weights, this procedure is
non-trivial and it is difficult to achieve a satisfactory solution because the selection of weight is also non-
intuitive. In fact there is no best result and some cases produce better conformity to the desired shape in
certain criteria than others. Thus, what is needed is an algorithm that automatically reduces the bumpiness
by improving the curvature criteria and yet not allowing the displacement criteria to deteriorate signifi-
cantly — this is the objective of the algorithm developed in the next section, known as the PBVD.

5. Perturbation buildup voltage distribution method for shape control

Many existing shape control algorithms are formulated from displacement based cost function. Chee
et al. (2000b) showed that simple desired shapes and configurations can be obtained with relative ease while
more complex desired shapes or structural configurations are achievable globally but introduces some
unevenness locally. However, this leads to bumpiness of the transverse displacement profile as shown in
Fig. 2. Investigations using dual criteria curvature—displacement McLLS shape control (previous section)
appeared to be have smoothed certain regions of the structure but tip displacements are worse than in the
DBSC case. In addition, the determination of weights would not be a trivial task. Thus an iterative per-
turbation technique is introduced and it implicitly targets regions that need the most improvement. The
PBVD concentrates on iteratively correcting the curvatures locally. A consequence of PBVD will be the
smoothing of the actual structure because the curvatures are being controlled. And this is achieved without
significant sacrifice of the target displacement. Although the name and concept of the algorithm is moti-
vated by BVD — a purely DBSC method (Chee et al., 2000b) — the PBVD algorithm is significantly different.

5.1. The perturbation buildup voltage distribution algorithm

The PBVD method starts with the initial configuration which is the resultant of DBSC using LLS. The
strategy involves improving the curvature of the structure on an elemental basis — where the elements with
larger curvature discrepancies (compared to the desired curvature values) will be improved first. The
voltage required to improve the curvatures in an element will be calculated such that only small im-
provements are made at each iteration, hence requiring only small amounts of incremental voltage at a
time.

The measure of transverse displacements is the sum of the squared difference (Aw) between the desired
and the actual nodal values (see Eq. (21a)). But the curvatures are measured on an elemental basis hence the
area integral of the squared difference (AKy,, AK7 , AKY)) of the desired and actual curvature is used (see Eq.
(21b)). This has the advantage of placing more importance on the improvement of curvatures of larger sized
elements.

Aw =" (w;—wi)’ (21a)
i=1
A R S L R (21b)

To investigate the voltage perturbation effect on the curvature, the new curvature is compared with the
original curvature with respect to the desired curvature. Since the displacement and curvature are in fact
competing criteria, the improvement of the curvature of the structure will be at the expense of achieving the



6392 C. Chee et al. | International Journal of Solids and Structures 38 (2001) 6381-6403

desired displacement, as shown using the McLLS in the previous section. By incorporating a tolerance
factor p, it is possible to aim for an improvement in the curvature at the same time as restricting the
displacement criteria from deteriorating excessively. This dual criteria is expressed in Eq. (22).

/A (K, — Ke9)2dd, < (1-p) / (K0 — K29 dd,
A

nodes nodes (22)
Y= wh) < (14p) Y (W) —wi)’

i=1 1

where superscript d = desired quantities. Note that the equations involving K,, and K,, would be similar to
Eq. (22).

During each iteration, an incremental voltage will be added temporarily and the effects on the curvature
of the other elements as well as displacements are checked. If the side effects of adding d¢ are tolerable, then
it is added permanently and the new voltage configuration will be used in the next iteration.

Perturbing the voltage at the kth patch only, the dual criteria is re-expressed as Eq. (23) and enable the
calculation of the optimum incremental voltage d¢. Note that the equations involving X,, and K,, are
similar to Eq. (23) but not shown here. The algorithm will choose the element and the fype of curvature,
which needs the most improvement, to act upon.

p/( )dA+2d¢/ )(Cs ) dA+dq/)/Ce );dd <0

nodes nodes nodes (23)

—pz +2d¢Zw Co)y +do Z

where K¢, = K¢ 4+ K¢d and w' = w° + .
Another quantity that is used later is the CPI and is defined in Eq. (24).

0
CPI* (k,e) = % with ¢, = ¢; +d¢ and d¢p = 1.0

1
Ji. Ck., (G, +2Kg)dA,

CPI* (k,e) =

Large CPI(k,e) values implies that element e is insensitive to the voltage applied to patch k.
The PBVD algorithm is summarized as follows:

1. Perform displacement shape control using LLS and use the resultant voltage configuration as the initial
configuration for PBVD.

2. Calculate wy and AKY,, AK7 . AKY, for all elements e.

3. Sort the AKY,, AK? , AK? from the highest magnitude to the lowest.

4. Select an element w1th hlgh (AK®) to be improved upon. A normal probability distribution selection
mechanism is used so that elements with higher (but not necessarily the highest) (AK®) magnitude are
more likely to be selected.

5. Calculate CPI**(k, e), CPI®”(k,e) and CPI* (k, e) for the kth patch and the eth element for all patches
and all elements.

6. Sort the curvature sensitivities among all patches, for the selected element.

7. Begin iteration of voltage perturbation starting from the most sensitive patch.

8. Calculate incremental voltage d¢ necessary to improve curvature for this element but with a tolerable
worsening in displacement. This is done by ﬁnding the optimum d¢ of Eq. (19).

9. Apply d¢ and recalculate Aw and AKY,, AK; ., AK? for all elements.
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10. Check for adverse effects in the slopes of other elements when d¢ was applied to patch k. If the slope of
the other elements are within a tolerable limit (s tolerance factor) then accept the new voltage configu-
ration and begin the next iteration in step 2. Otherwise, go to step 7 to perturb the next patch.

11. Continue iteration until maximum number of iterations is reached or tolerance on original Aw is ex-
ceeded.

6. Performance of perturbation buildup voltage distribution in curvature displacement shape control

A set of tests is performed here to illustrate the performance of using curvature as the perturbing criteria.
The same structural model (Fig. 1) and twisted desired shape (Eq. (20)) is used as before. The voltage
configuration is initialized by first using the LLS method to perform shape control with the displacement
criteria only. The resulting voltage configuration is perturbed in order to improve the curvature difference
between the desired and the actual shape. Various parameters of the PBVD were varied and a selection of
cases representing a wide range of the results is presented here. Table 2 shows the main parameters of
PBVD while Fig. 7 shows the LS measures for displacements, slopes and curvatures normalized with case 1
— where only displacement criterion is used. The LS values measure the differences, of the respective
quantities, between the desired shape and the actual shape.

Table 2
Parameters for several case of CDSC using PBVD
Parameters Case
1 (Ref.) 2 3 4 5 6 7 8 9
LS d tolerance - 5.5 0.05 0.5 5.5 5.5 5.5 0.5 0.5
Mult. iter. - 0.5 0.5 0.5 100.9 100.9 1.9 1.9 1.9
p tolerance - 0.01 0.01 0.01 0.01 0.1 0.001 0.001 0.1
s tolerance - 2.3 2.3 2.3 2.3 0.01 0.3 0.01 0.0001

Normalized measure with case 1

Case #

Fig. 7. Least square measures of displacement LS w, slopes LS S;, LS S, and curvatures LS K., LS K,,, LS K,,, and tip displacement at
free corner for CDSC using PBVD.
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It is quite clear from Fig. 7 that using PBVD in CDSC has improved the conformity of all three types of
curvatures between the desired and the actual shape — i.e. normalized LS K., LS K, and LS K,, values less
than 1.0. Hence a quick conclusion is that PBVD has achieved its aim in CDSC by reducing the differences
between the curvatures of the desired and actual shape. This in turn has reduced the bumpiness of the
structure. However, the problem is more interesting and challenging because tailoring the voltage configu-
ration to minimize curvature difference (or slope difference in SDSC), is at the expense of the conformity of
transverse displacements. When there is a good curvature match, the displacement match becomes poorer.

Hence a balance is sought between the requirements of a good displacement match and a good curvature
match (reducing bumpiness). This is achieved readily by PBVD via parameters such as LS d — the tolerance
of displacement deterioration or p — the tolerance associated with the size of the voltage perturbation. Thus
notice in Fig. 7 that cases with very low LS curvature values (cases 5-7) also have quite large LS dis-
placement values. In fact case 6 would suitable when there is a strong need to conform to the desired
curvatures because LS K,,, LS K,,, LS K,, and LS S, have improved by 70%, 75%, 40% and 60% respec-
tively; at the expense of LSw and tip displacements increasing by six and four times respectively. On the
other hand cases 2, 4, 8, 9 which have moderately low LS curvature values, have LS w values which are not
too excessive. Note that for this particular test model, improving the curvatures tend to improve the S,
slope but the S, slope deteriorates a little.

The parameter Mult. Iter. in Table 2 is the number of inactive iterations before the algorithm terminates
and is similar to a convergence parameter. In cases 5-7 where the total displacement tolerance, LS d, and
Mult. Iter. is quite high, it allows the PBVD process to tolerate a greater deterioration of the displacement
measure while improving the curvature. In case 2 however, although LSd is large, Mult. Iter. has a low
value, thus the algorithm stops at quite low LSw value with good improvement in curvatures obtained.
Restricting cases 4,8,9 to have low displacement tolerance LS d values, their LS w values are never exces-
sively high but yet they can still achieve significant improvement in curvatures. Case 3 has a very strict LS d
value thus the improvement in curvature is also quite restricted. The tip displacement at one end of the
cantilever plate, see Fig. 7, is also strongly correlated with the displacement measure LS w.

Besides looking at the LS curvature values, the reduction in bumpiness can also be seen graphically. The
oblique view of the transverse displacement plots of cases 4 and 7 are shown in Figs. 8 and 9 respectively.
Comparing to the pure displacement control case in Fig. 2, much of the region which appear uneven or
bumpy especially near the edges, have been reduced in Figs. 8 and 9 except for the central region. Also note
that case 7 (Fig. 9) has a more relaxed displacement tolerance than case 4 (Fig. §), thus the former is able to
improve its curvatures to a greater extent but also notice that its tip displacement has diverged more than
the latter.
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Fig. 8. Cantilever plate after PBVD procedure for CDSC, case 4. Oblique full field view of the transverse displacement.
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Fig. 9. Cantilever plate after PBVD procedure for CDSC, case 7. Oblique full field view of the transverse displacement.

6395

The voltage distribution of a selected number of cases is shown in Table 3. Note that the magnitude of
the voltages are quite high because of the required shape that was specified — from the desired shape Eq.
(20), this amount to a maximum corner displacement of 1.35 mm. The results seem sensible since the
predicted voltages does reflect an anti-symmetric pattern in order to achieve the anti-symmetric twisted

shape.

From the series of tests, it was noted that the LS d is one of the important parameters and it determines
the extent to which the curvatures can be improved as well as how much the displacement measure is al-
lowed to deteriorate. The other important parameter is the p tolerance which controls the degree of per-
turbation at each iteration. It was found that a low value, for this case 0.001-0.01, gave reasonable results.

Table 3
Selected voltage distribution for actuator patches of cases in Table 2
Patch voltage Cases
1 4 7

1 6023.5 6023.5 4886.7
2 12126.2 10026.7 5509.3
3 8300.9 5252.6 5101.0
4 7725.5 7451.0 3833.9
5 —3252.0 —3252.0 —7162.5
6 8596.0 8596.0 7925.8
7 —7025.2 —7025.2 —7025.2
8 —3957.5 —3957.5 —3957.5
9 —2832.5 —2832.5 —3108.9
10 —807.6 —807.6 —807.6
11 —8596.0 —8596.0 —8004.0
12 7025.2 7025.2 7025.2
13 3957.5 3957.5 3957.5
14 2832.5 2832.5 2832.5
15 807.6 807.6 807.6
16 —6023.5 —6023.5 —4630.6
17 —12126.2 —9937.8 —5557.8
18 —8300.9 —5376.2 —5094.1
19 —7725.5 —7437.8 —4433.8
20 3252.0 3252.0 7197.1
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A low value of p means that perturbation occurred slowly with fine steps, whereas high p values indicate
coarser perturbation steps and may lead to poorer results. Thus the operation of this parameter is quite
similar to the cooling rate parameter in SA which controls the quality of the solution. For this example,
Mult. Iter. may be taken as 2.0 or above to prevent premature termination of the algorithm while the s
tolerance, which essentially controls the side effects of perturbing an element, may be taken as 0.01. There is
a degree of flexibility in choosing the last two parameters within a certain range.

The two figures of Figs. 10 and 11 are the normalized curvature and slope measures taken along the
x-axis at y = 4.5 x 1072 m. Cases 7-9 are omitted from the graphs because they are quite similar to cases
2, 3 and 5 respectively. The measure for the K|, graph is shown here because among all three curvatures that
can be improved by PBVD-CDSC, K|, is the curvature that required the most improvement and therefore
the PBVD algorithm automatically focuses more effort in improving this criteria. One of the positive side
effects illustrated here is that using PBVD to improve the curvature will also result in an improvement of the
S, slope. However, Fig. 11 shows the conformity of the S, slope to the desired slope deteriorates consid-
erably near the free end of the cantilever plate for cases 5 and 6. This is not unexpected since cases 5 and 6
were specified to have a higher tolerance of displacement deterioration — this is also reflected in high LSw
values in Fig. 7.
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Fig. 10. Normalized curvature measure for K, for five cases of PBVD-CDSC and a reference case.
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Fig. 11. Normalized slope measure for S, for five cases of PBVD-CDSC and a reference case.
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The main features of Figs. 10 and 11 illustrates that PBVD has achieved reduction in curvature, and in
addition the slope S,, when compared to reference case 1 which uses only displacements for SC. Most cases
show that the curvature K, conforms better (lower values of LSK,,) to its desired counterpart. The
question as to which of the cases are better depends partly on the user and its application as to the im-
portance of conformity of the curvature versus displacements.

7. Stress reduction effect

The existence of complex stress fields within a smart structure should be expected because of the in-
dependent localized actuators distributed throughout the structure. The greater number of independent
active patches, the greater is the shape controllability. This is analogous to providing the structure with
enough actuation degrees of freedom in order to achieve a complex shape which can be thought of as a
combination of basic shapes. By imposing voltages on the actuators, the structure is being coerced into the
desired shape. This effect is more forceful in the LLS method because it is a direct approach whereas the
iterative approach of PBVD is more relaxed in its process of calculating the voltage distribution. In either
case, when significantly different voltages are applied to various patches, as directed by the shape control
algorithm, localized internal stresses are setup. This issue is particularly significant to smart structures
where the actuators are not external but are regarded as an integral part of the structure.

The bumpiness of the shape of the structure is in fact changes in slope in localized regions. This means
the local curvature has a higher than usual magnitude. In practical terms, this translates to high stresses in
certain regions as well as large variation in stresses between other regions. Since the PBVD algorithm has
the ability to smoothen the structure, it can be regarded as a secondary procedure in shape control to
reduce internal structural stress caused by the primary stage which is pure displacement shape control. This
conjecture has been validated by Chee et al. (2000¢) for SDSC and will now be validated in CDSC using the
PBVD algorithm.

The following tests (Figs. 12—15) compare the internal stresses generated within the structure as a result
of the pure displacement shape control using LLS and the stresses obtained after the PBVD procedure is
applied. This particular configuration from which the stresses are measured, corresponds to case 6 in Table
2. It was selected because it produced the most improvement in curvature and slope conformity, see Fig. 7.
Hence it is expected to produce significant reduction in stresses. The stresses for each element are calculated
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Fig. 12. Reduction of the normal in-plane stresses by the PBVD-CSDSC procedure (y-section).
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Fig. 14. Reduction of the normal in-plane stresses by the PBVD-CDSC procedure (x-section).

at their 2 x 2 Gauss points at a height of z = 9.0 x 10~* m, which is within the Aluminum substrate. Al-
though all six stresses were calculated, only a selection of the results are presented here due to space
limitation. The normal in-plane stresses at y = —3.923 x 1072 m along the length of the structure is shown
in Fig. 12 — dashed lines for stresses without PBVD and solid lines for stresses with PBVD. There is a clear
reduction in the axial stress o, along the entire length of the structure and it is mainly tensile stresses.
Several points with high ¢, magnitudes were also reduced significantly and also note that this stress is
compressive in some regions and tensile in others.

The in-plane shear stress (t,,) and one of the transverse shear stresses (t,.) are plotted in Fig. 13 at
y = —3.923 x 1072 m. Although the transverse shear stress may be smaller in magnitude compared to the
other stresses, it is clearly not negligible. This justifies the need to use a displacement field such as the
present one that is able to capture the transverse shear effects. From Fig. 13 it can be seen that at points
with high stress magnitudes, applying PBVD would reduce their magnitudes significantly. This effect is
consistent with the PBVD algorithm which was founded on the premise of reducing the worst local effects.
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Fig. 15. Reduction of a transverse and in-plane shear stress by the PBVD-CDSC procedure (x-section).

The normal in-plane stresses at the perpendicular cross-section, x = 8.077 x 1072 m is plotted in Fig. 14
while the transverse and in-plane shear stresses are found in Fig. 15. This cross-section is almost at the
center of the cantilever plate running across its width. Regions of high stresses in both Figs. 14 and 15 has
been significantly reduced. For example in Fig. 14, the maximum reduction of ¢,, of approximately 60-16
MPa (73%) was achieved, while in Fig. 13 the in-plane shear (twist) stress 7., was reduced from 22 to 5 MPa
(77%) at one region. Note that in all graphs, the discrete nature of the stress distribution is quite evident and
this is a mere reflection of the discrete actuator patch layout of the physical structure.

Comparison of the stresses obtained by the current CDSC process with its counterparts using the SDSC
process (Chee et al., 2000c) shows a greater reduction in stresses for the former case. The reason is because
CDSC focus on improving the curvature conformity with the desired shape, although the slope conformity
does improve alongside, and vice versa for SDSC. Hence as the curvature criteria improves to a greater
extent in CDSC, the stress reduction is also greater since curvature is proportional to stress in classical
mechanics.

The graphs of Figs. 12-15 gives an indication of the magnitude of stress reduction at certain cross-
sections. The discreteness of the actuator patches have considerable effects on the entire stress field as
indicated by the abrupt changes in magnitudes over the domain of the structure. The complexity of the
stress fields is more readily appreciated by looking at the full field view of the stress field as shown in Figs.
16 and 17. The two pairs of plots in Figs. 16 and 17 represent the o, axial stress components and the 7.,
transverse shear stress (in Pa), and each pair compare the stresses that results from DBSC using LLS and
the additional process of CDSC using PBVD. There are regions in which stresses have reduced quite
substantially and there does not appear to be any observable increase in stresses in other regions. In essence,
the PBVD for the CDSC process does not only calculate the voltages required to manipulate the structure
into a desired shape, it also ensures that its voltage configuration will generate less stresses compared to the
case when only the displacement criterion is used.

8. Conclusion

A novel shape control algorithm that uses both displacement and curvature criteria is presented here.
The FE formulation was based on a combination of third order displacement field and layerwise concept
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Fig. 16. (a) Pure displacement control — Stress xx. (b) CDSC with PBVD — Stress x.x.

developed by the authors for laminated smart composite plate structures. Many existing shape control
algorithms are displacement based which yield reasonable results. However for an extended structure with
many independent actuators distributed across the structure, it was found that pure DBSC predicts a
voltage configuration which when applied, produces regions of bumpiness in the shape due to localized
effects. The PBVD is an iterative algorithm designed to reduce this effect by targeting some of the worst
effected regions by using curvature values. Regions where the desired curvature differs most from the actual
curvature are improved first. Since the displacement and curvatures are conflicting criteria, the curvatures
would have to be improved at the expense of the displacement. This has been designed into the algorithm to
enable the user to decide the extent of the worsening of the displacement criteria that is tolerable. The
results have shown that the algorithm is successful in achieving its goal of determining the voltage con-
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figuration to actuate the structure to conform to the desired shape and smoothing the structure to a certain
extent.

In addition to smoothing the actual structure’s shape, a more practical advantage of this application is
that it produces less internal stresses than using DBSC. In real structures where discrete actuators are in
operation, although the bumpiness may not always be obvious, the large gradients imply large internal
strains and thus large internal stresses. Thus the significance of smoothing extends to alleviating unnec-
essary internal stresses that could be generated if a purely displacement shape control is used. This prevents
over-stressing of the structure and reduce chances of de-bonding in composites applications. Results show
that PBVD preferentially reduces the high magnitude stresses to a greater extent than others — especially
high stress peaks.
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It is worth pointing out that the proposed method and concept can be readily adapted to the problem of
optimal actuator layout in an active structure.
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